(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
decrease(Cons(x, xs)) → decrease(xs)
decrease(Nil) → number42(Nil)
number42(x) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x) → decrease(x)
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3]
transitions:
Cons0(0, 0) → 0
Nil0() → 0
decrease0(0) → 1
number420(0) → 2
goal0(0) → 3
decrease1(0) → 1
Nil1() → 4
number421(4) → 1
Nil1() → 5
Nil1() → 8
Cons1(5, 8) → 7
Cons1(5, 7) → 6
Cons1(5, 6) → 6
Cons1(5, 6) → 2
decrease1(0) → 3
number421(4) → 3
Nil2() → 9
Nil2() → 12
Cons2(9, 12) → 11
Cons2(9, 11) → 10
Cons2(9, 10) → 10
Cons2(9, 10) → 1
Cons2(9, 10) → 3
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
decrease(Cons(z0, z1)) → decrease(z1)
decrease(Nil) → number42(Nil)
number42(z0) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(z0) → decrease(z0)
Tuples:
DECREASE(Cons(z0, z1)) → c(DECREASE(z1))
DECREASE(Nil) → c1(NUMBER42(Nil))
NUMBER42(z0) → c2
GOAL(z0) → c3(DECREASE(z0))
S tuples:
DECREASE(Cons(z0, z1)) → c(DECREASE(z1))
DECREASE(Nil) → c1(NUMBER42(Nil))
NUMBER42(z0) → c2
GOAL(z0) → c3(DECREASE(z0))
K tuples:none
Defined Rule Symbols:
decrease, number42, goal
Defined Pair Symbols:
DECREASE, NUMBER42, GOAL
Compound Symbols:
c, c1, c2, c3
(5) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
GOAL(z0) → c3(DECREASE(z0))
Removed 2 trailing nodes:
NUMBER42(z0) → c2
DECREASE(Nil) → c1(NUMBER42(Nil))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
decrease(Cons(z0, z1)) → decrease(z1)
decrease(Nil) → number42(Nil)
number42(z0) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(z0) → decrease(z0)
Tuples:
DECREASE(Cons(z0, z1)) → c(DECREASE(z1))
S tuples:
DECREASE(Cons(z0, z1)) → c(DECREASE(z1))
K tuples:none
Defined Rule Symbols:
decrease, number42, goal
Defined Pair Symbols:
DECREASE
Compound Symbols:
c
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
decrease(Cons(z0, z1)) → decrease(z1)
decrease(Nil) → number42(Nil)
number42(z0) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(z0) → decrease(z0)
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
DECREASE(Cons(z0, z1)) → c(DECREASE(z1))
S tuples:
DECREASE(Cons(z0, z1)) → c(DECREASE(z1))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
DECREASE
Compound Symbols:
c
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DECREASE(Cons(z0, z1)) → c(DECREASE(z1))
We considered the (Usable) Rules:none
And the Tuples:
DECREASE(Cons(z0, z1)) → c(DECREASE(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(Cons(x1, x2)) = [1] + x2
POL(DECREASE(x1)) = x1
POL(c(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
DECREASE(Cons(z0, z1)) → c(DECREASE(z1))
S tuples:none
K tuples:
DECREASE(Cons(z0, z1)) → c(DECREASE(z1))
Defined Rule Symbols:none
Defined Pair Symbols:
DECREASE
Compound Symbols:
c
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)